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Mass measurement on the rp-process waiting point 72Kr
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Abstract. With the aim of improving nucleosynthesis calculations, we performed for the first time, a direct
high-precision mass measurement on the waiting point in the astrophysical rp-process 72Kr. We used the
ISOLTRAP Penning trap mass spectrometer located at ISOLDE/CERN. The measurement yielded a
relative mass uncertainty of δm/m = 1.2× 10−7. In addition, the masses of 73Kr and 74Kr were measured
directly with relative mass uncertainties of 1.0× 10−7 and 3× 10−8, respectively. We analyzed the role of
72Kr in the rp-process during X-ray bursts using the ISOLTRAP and previous mass values of 72–74Kr.

PACS. 07.75.+h Mass spectrometers – 21.10.Dr Binding energies and masses – 26.30.+k Nucleosynthesis
in novae, supernovae and other explosive

1 Introduction

Very precise mass values of elements formed along the
rapid proton capture process (rp-process) are crucial for
reliable calculations of X-ray burst light curves [1]. An X-
ray burst is a thermonuclear explosion on the surface of
a neutron star accreting hydrogen and helium rich mat-
ter from a companion star in a binary system. The ex-
treme temperature and density conditions in this scenario
can lead to the formation of elements up to Te (Z = 52)
within 10–100 s. They are formed by continuous rapid pro-
ton captures, interrupted at the so-called waiting points by
β+-decays. Waiting point nuclei come on stage when (p, γ)
proton capture is hindered by (γ, p) photodisintegration of
weakly proton bound or unbound nuclei. This causes a de-
lay in the X-ray burst duration and consequently, affects
the X-ray burst light curve and the nucleosynthesis. This
delay is the time for a certain abundance to drop to 1/e
and is referred to as effective lifetime. The effective lifetime
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depends exponentially on the mass difference between the
waiting point nucleus, here 72Kr, and the possibly formed
nucleus 73Rb (or as the temperature increases 74Sr). This
calls for mass values of 72Kr, 73Rb, and 74Sr with relative
mass uncertainties δm/m of the order of 10−7. We mea-
sured directly the mass of 72Kr at ISOLTRAP [2]. Since
73Rb and 74Sr are difficult to access experimentally, we
determined their masses from the masses of their mirror
nuclei 73Kr and 74Kr, also measured directly in the exper-
iment reported here.

2 Experimental setup and method

The ISOLTRAP facility [3,4,5] is located at
ISOLDE/CERN [6] in Geneva (Switzerland). The
system is shown in fig. 1. It consists of three different
traps: A gas-filled linear Paul trap [4], a gas-filled cylin-
drical Penning trap [7] and a hyperbolic Penning trap in
ultra-high vacuum [3].

The 60 keV krypton beam from ISOLDE is electro-
statically retarded to about 10–20 eV and thermalized in
the buffer-gas-filled linear Paul trap. After an accumula-
tion time of up to a few tens of milliseconds, the cooled
ion bunch is ejected with a temporal width of less than
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Fig. 1. Sketch of the ISOLTRAP setup.

1µs. The ion bunches are transported with an energy of
2.8 keV and after retardation captured in the purification
Penning trap for isobaric cleaning. Thereafter, the ions
are ejected and transferred to the precision Penning trap
where the mass measurement is carried out.

The mass m of singly charged ions is determined by
a measurement of the cyclotron frequency νc employing
the relationship

νc =
1

2π
·

e

m
·B, (1)

where B is the strength of the homogeneous magnetic field
in the center of the precision Penning trap (∼ 5.9T), and e
is the atomic unit of charge. The cyclotron frequency is de-
termined using a resonant time-of-flight technique [8]. The
magnetic field B in eq. (1) is deduced from the measure-
ment of the cyclotron frequency of ions with well-known
mass, here 85Rb+ (δm/m = 2 × 10−10 [9]). This is per-
formed before and after the measurement of the cyclotron
frequency of each ion of interest. The value adopted for B
is the result of the linear interpolation of both measure-
ments to the center of the time interval during which the
cyclotron frequency of the ion of interest was measured.
In that way, possible drifts of the magnetic field are ac-
counted for. The final relative mass uncertainty includes
effects like the long term drifts of the magnetic field and
the presence of contaminating ions, among the mass de-
pendant uncertainty and the systematics uncertainty of
the apparatus (δm/m = 8× 10−9) [10].

3 Results and discussion

The mass excess D of a nucleus is given by

D = m−A · u, (2)

where m is the atomic mass, A the atomic mass num-
ber, and u the atomic mass unit [11]. Table 1 shows

Table 1. Mass excess values for 72,73,74Kr, 73Rb, and 74Sr
from ISOLTRAP [2] compared to previous results [12]. Note
that the mass values of 73Rb and 74Sr are obtained through
the mass values of their mirror nuclei 73Kr and 74Kr using the
calculated Coulomb shifts from Brown et al. [13].

Nuclide T1/2 Dpre /keV DISOLTRAP /keV

72Kr 17.2 s −54110(270) −53940.6(8.0)
73Kr 27.0(1.2) s −56890(140) −56551.7(6.6)
74Kr 11.5(1)min −62170(60) −62332.0(2.1)
73Rb < 24 ns −46270(170) −45940(100)
74Sr 50ms −40670(120) −40830(100)
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Fig. 2. Effective lifetime for 72Kr at 1.3GK. The solid line
marks the lowest limit due to the non-observation of 73Rb,
and the dotted line gives the β-decay lifetime.

the mass excess values of 72,73,74Kr, 73Rb, and 74Sr from
ISOLTRAP [2] compared to those given in the literature
prior to our measurements [12].

With the mass excess values given in table 1 we cal-
culated the effective lifetime for 72Kr. We took into ac-
count proton capture on 72Kr and 73Rb, photodisintegra-
tion on 73Rb, and 74Sr, and β+-decay of 72Kr, 73Rb, and
74Sr. Proton capture rates are as in Schatz et al. [14]. Fig-
ure 2 shows the minimum effective lifetime (T = 1.3GK,
ρ = 106 g/cm3, Yp = 0.88) using the ISOLTRAP mass val-
ues and the previous results. Our result shows that 72Kr
is a strong waiting point in the rp-process [2]. It delays
the X-ray burst by at least 20.8(3.4) s. This reduces con-
siderably the uncertainty in the delay obtained using the
previous mass values (2–24.8 s). However, the effective life-
time depends linearly on the 73Rb(p, γ)74Sr reaction rate
and for this reaction rate, uncertainties of a few orders of
magnitude cannot be excluded. This implies the necessity
to measure this rate experimentally.
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